Tailoring Unstrained Pyrrolidines via Reductive C–N Bond Cleavage with Lewis Acid and Photoredox Catalysis

30 July 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Skeletal remodeling of unstrained azacycles such as pyrrolidine remains a formidable challenge in synthetic chemistry. To achieve such remodeling, continuous development of the cleavage of inert C–N bonds is essential. In this study, we introduce an effective strategy for the reductive cleavage of C–N bond in N-benzoyl pyrrolidine, leveraging a combination of Lewis acid and photoredox catalysis. This method involves single-electron transfer to the amide, followed by site-selective cleavage at C2–N bond. Cyclic voltammetry and NMR studies demonstrated that the Lewis acid is crucial for promoting the single-electron transfer from the photoredox catalyst to the amide carbonyl group. This protocol is widely applicable to various pyrrolidine-containing molecules and enables inert C–N bond cleavage including C–C bond formation via intermolecular radical addition. Furthermore, the current protocol successfully converts pyrrolidines to aziridines, lactones, and tetrahydrofurans, demonstrating the potential to expand synthetic strategies in skeletal remodeling.

Keywords

Pyrrolidine
Ring opening
Photoredox catalyst
Lewis acid
Radical addition
Skeletal Remodeling
Skeletal editing

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental procedures and spectroscopic data for com-pounds including 1H, 13C, and 19F NMR spectra
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.