Biocatalytic C–H Oxidation Meets Radical Cross-Coupling: Simplifying Complex Piperidine Synthesis

04 July 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Medicinal chemists in the modern era are targeting molecules with greater complexity to address increasingly challenging biological targets, a drive to enhance on-target specificity as well as physiochemical properties. As such, structures with greater fraction sp3 (Fsp3) character, reminiscent to those found in nature, are being synthesized. Many decades of synthetic methodology development have democratized access to flat, high sp2 (for example biaryl linkages) which has led to the commercialization of innumerable medicines. Those approaches rely heavily on electrophilic aromatic substitution (such as halogenation) followed by Pd-based cross coupling. In contrast, methods and strategies that allow for similarly modular and rapid construction of three-dimensional saturated molecules are less well developed. Here we exemplify a new approach for the rapid, modular, enantioselective construction of piperidine frameworks (the saturated analog of pyridine) that combines robust, tunable, and scalable biocatalytic methods with the logic of radical cross coupling. Thus, a set of reliable enzymatic systems (analogous to site-selective aromatic functionalization) provides scalable access to enantiopure hydroxyacid- containing piperidine derivatives that can be utilized to dramatically simplify routes to medicinally important molecules and natural products by employing recently developed electrocatalytic couplings (analogous to Pd-based cross couplings in aromatic systems). This study points to a different approach to rapidly access complex architectures that may appeal to both medicinal and process chemists alike.

Keywords

Biocatalysis
C–H oxidation
Radical
Cross-coupling
Piperidine

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Experimental graphical procedures, additional experimental data, NMR characterization data and X-ray characterization detail.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.