Abstract
Molecular perovskites are important materials in the area of barocalorics, improper ferroelectrics and ferroelastics, where the search for principles that link composition, structure and mechanical properties is a key challenge. Herein, we report the synthesis of a new series of dicyanamide-based molecular perovskites [A]Ni(C2N3)3, where A+ is a range of alkylated piperidinium cations. We use this new family to explore how A+ cations determine their mechanical response by measuring the bulk modulus (B) – using high-pressure powder X-ray diffraction. Within the series, we find a positive correlation between the network distortions of the pseudocubic [Ni(C2N3)3]– network and B. Furthermore, we show that we can tune framework distortions, and therefore B, by synthesising A-site solid solutions. The applied methodology is a blueprint for linking framework distortions and mechanical properties in network materials and guides us toward principles for designing macroscopic properties via systematic compositional changes in molecular perovskites.
Supplementary materials
Title
Supplementary information
Description
Supplementary information
Actions