Catalytic Resonance Theory: Forecasting the Flow of Programmable Catalytic Loops

03 July 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chemical transformations on catalyst surfaces occur through series and parallel reaction pathways. These complex networks and their behavior can be most simply evaluated through a three-species surface reaction loop (A* to B* to C* to A*) that is internal to the overall chemical reaction. Application of an oscillating dynamic catalyst to this reactive loop has been shown to exhibit one of three types of behavior: (1) a positive net flux of molecules about the loop in the clockwise direction, (2) a negative net flux of molecules about the loop in the counterclockwise direction, or (3) negligible flux of molecules about the loop at the limit cycle of reaction. Three-species surface loops were simulated with microkinetic modeling to assess the reaction loop behavior resulting from a catalytic surface oscillating between two or more catalyst surface energy states. Selected input parameters for the simulations spanned 11-dimensional parameter space using 127,688 different parameter combinations. Their converged limit cycle solutions were analyzed for their loop turnover frequencies, the majority of which were found to be approximately zero. Classification and regression machine learning models were trained to predict the sign and magnitude of the loop turnover frequency and successfully performed above accessible baselines. Notably, the classification models exhibited a baseline weighted F1 score of 0.48, whereas trained models achieved weighted F1 scores of 0.91 and 0.96 when trained on the parameters used to define the simulations and derived rate constants, respectively. The trained models successfully predicted catalytic loop behavior, and interpretation of these models revealed all input parameters to be important for the prediction and performance of each model.

Keywords

Loop
Programmable

Supplementary materials

Title
Description
Actions
Title
Supporting information for Catalytic Resonance Theory: Forecasting the Flow of Programmable Catalytic Loops
Description
The Supporting Information file includes: Binding energies derivation, microkinetic model derivation, code development and block logic diagrams
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.