Arylthianthrenium salts for triplet energy transfer catalysis

01 July 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Sigma bond cleavage through electronically excited states allows synthetically useful transformations with two radical species. Direct excitation of simple aryl halides to form both aryl and halogen radicals necessitates UV-C light, so undesired side reactions are often observed, and specific equipment is required. Moreover, only aryl halides with extended pi systems and comparatively low triplet energy are applicable to synthetically useful energy transfer catalysis with visible light. Here we show the conceptual advantages of arylthianthrenium salts (ArTTs) for energy transfer catalysis with visible light in high quantum yield as compared to conventional aryl(pseudo)halides, and their utility in arylation reactions of ethylene. The fundamental advance is enabled by the low triplet energy of ArTTs that may originate in large part from the electronic interplay between the distinct sulfur atoms in the tricyclic thianthrene scaffold, which is neither accessible in simple (pseudo)halides nor other conventional sulfonium salts.

Keywords

energy transfer
arylthianthrenium salt
visible light catalysis
ethylene functionalization
arylethyl amine

Supplementary materials

Title
Description
Actions
Title
Arylthianthrenium salts for triplet energy transfer catalysis
Description
Sigma bond cleavage through electronically excited states allows synthetically useful transformations with two radical species. Direct excitation of simple aryl halides to form both aryl and halogen radicals necessitates UV-C light, so undesired side reactions are often observed, and specific equipment is required. Moreover, only aryl halides with extended pi systems and comparatively low triplet energy are applicable to synthetically useful energy transfer catalysis with visible light. Here we show the conceptual advantages of arylthianthrenium salts (ArTTs) for energy transfer catalysis with visible light in high quantum yield as compared to conventional aryl(pseudo)halides, and their utility in arylation reactions of ethylene. The fundamental advance is enabled by the low triplet energy of ArTTs that may originate in large part from the electronic interplay between the distinct sulfur atoms in the tricyclic thianthrene scaffold, which is neither accessible in simple (pseudo)halides nor other conventional sulfonium salts.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.