Ambient Cationic Ring-opening Polymerization of Dibenzo[c,e]oxepine-5(7H)-thione (DOT): Thermal and Nucleophile-initiated Depolymerization

28 June 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

With rising concern over plastic waste accumulation worldwide, the quantitative depolymerization of polymers into small molecule building blocks offers avenues toward a circular polymer economy. But a tuning of the polymer stability versus degradation efficiency remains challenging. Herein, the thionolactone dibenzo[c,e]oxepine-5(7H)-thione (DOT) is shown to undergo cationic ring-opening polymerization (CROP) under ambient conditions without the need for inert atmosphere or dry solvents. Involving S–O isomerization, the polymerization gave polythioesters in near-quantitative conversions with tuneable SEC-measured molar masses from 1.3–50 kg/mol and dispersities between 1.5–2.0. The polythioesters could be degraded with an excess of amine, with substoichiometric amounts of thiolate (which was shown to involve depolymerization from a thiolate ω-end group), or thermally. The latter two conditions produced the thiolactone dibenzo[c,e]thiepine-5(7H)-one (DTO). While anionic ring-opening polymerization (the common route to polythioesters) gives thiol end groups, the CROP presented herein provided end-capped polymers. Interestingly, the choice of initiator (and resulting end cap) was shown to have a drastic influence on the thermal stability. While a boron trifluoride-initiated polymer showed only 6% decomposition when heated to 140 °C without solvent, a comparable methyl triflate-initiated polymer underwent 35% degradation to DTO when heated to the same temperature overnight.

Keywords

CROP
thionolactone
polythioester
depolymerization
degradable polymers

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
1-D and 2-D NMR and FT-IR spectra, thermal characterization of homopolymers; SEC and NMR data demonstrating degradation of homopolymers
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.