ATP-triggered Fe(CN)2CO synthon transfer from the maturase HypCD to the active site of apo-[NiFe]-hydrogenase

28 June 2024, Version 1

Abstract

[NiFe]-hydrogenases catalyze the reversible activation of H2 using a unique NiFe(CN)2CO metal site, which is assembled by a sophisticated multi-protein machinery. The [4Fe–4S]-cluster-containing HypCD complex, which possesses an ATPase activity with an hitherto unknown function, serves as the hub for the assembly of the Fe(CN)2CO sub-fragment. HypCD is also thought to be responsible for the subsequent transfer of the iron fragment to the apo-form of the catalytic hydrogenase subunit, but the underlying mechanism remained unexplored. Here, we performed a thorough spectroscopic characterization of different HypCD preparations using infrared, Mössbauer and NRVS spectroscopy, revealing molecular details of the coordination of the Fe(CN)2CO fragment. Moreover, biochemical assays in combination with spectroscopy, AlphaFold structure predictions, protein-ligand docking calculations and crosslinking MS deciphered unexpected mechanistic aspects of the ATP requirement of HypCD, which we found to actually trigger the transfer of the Fe(CN)2CO fragment to the apo-hydrogenase.

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplemetal Figures, Tables, Notes, Methods and References
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.