Boosting Chemiexcitation of Phenoxy-1,2-Dioxetanes through 7-Norbornyl and Homocubanyl Spirofusion

07 June 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The chemiluminescent light-emission pathway of phenoxy-1,2-dioxetane luminophores is increasingly attracting the scientific community's attention. Dioxetane probes that undergo rapid, flash-type chemiexcitation demonstrate higher detection sensitivity than those with a slower, glow-type chemiexcitation rate. This is primarily because the rapid flash-type produces a greater number of photons within a given time. Herein, we discovered that dioxetanes fused to 7-norbornyl and homocubanyl units, present accelerated chemiexcitation rates supported by DFT computational simulations. Specifically, the 7-norbornyl and homocubanyl spirofused dioxetanes exhibited a chemiexcitation rate of 14.2-fold and 230-fold faster than the spiro-adamantyl-dioxetane, respectively. A turn-ON dioxetane probe for the detection of the enzyme β-galactosidase, containing the 7-norbornyl spirofused unit, exhibited an S/N value of 415 with low enzyme concentration. This probe demonstrated an increase in detection sensitivity towards β-galactosidase with a limit-of-detection value that is 9-fold more sensitive than that obtained by the adamantyl counterpart. Interestingly, the computed activation free energies of the homocubanyl and 7-norbornyl units were correlated with their CCsC spiro-angle, to corroborate the measured chemiexcitation rates.

Supplementary materials

Title
Description
Actions
Title
Supporting Informamation
Description
The file includes synthetic procedures and additional supportive data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.