Abstract
Polarizable continuum solvation models are popular in both, quantum chemistry and in biophysics, though typically with different requirements for the numerical methods. However, the recent trend of multiscale modeling can be expected to blur field-specific differences. In this regard, numerical methods based on domain decomposition (dd) have been demonstrated to be sufficiently flexible to be applied all across these levels of theory while remaining systematically accurate and efficient. In this contribution, we present ddX, an open-source implementation of dd-methods for various solvation models, which features a uniform interface with classical as well as quantum descriptions of the solute, or any hybrid versions thereof. We explain the key concepts of the library design and its API, and demonstrate the use of ddX for integrating into standard chemistry packages. Numerical tests illustrate the performance of ddX and its interfaces.
Supplementary weblinks
Title
Replication Data for: "ddX: Polarizable Continuum Solvation from Small Molecules to Proteins"
Description
Data for reproducibility of the numerical simulations of the research paper "ddX: Polarizable Continuum Solvation from Small Molecules to Proteins".
Actions
View