Navigating a 1E+60 Chemical Space

03 June 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Herein we report a virtual library of 1E+60 members, a common estimate for the total size of the drug-like chemical space. The library is obtained from 100 commercially available peptide and peptoid building blocks assembled into linear or cyclic oligomers of up to 30 units, forming molecules within the size range of peptide drugs and accessible by solid-phase synthesis. We demonstrate ligand-based virtual screening (LBVS) using the peptide design genetic algorithm (PDGA), which evolves a population of 50 members to resemble a given target molecule using molecular fingerprint similarity as fitness function. Target molecules are reached in less than 10,000 generations. Like in many journeys, the value of the chemical space journey using PDGA lies not in reaching the target but in the journey itself, here by encountering molecules otherwise difficult to design. We also show that PDGA can be used to generate median molecules and analogs of non-peptide target molecules.

Keywords

therapeutic peptides
chemical space
genetic algorithm
cheminformatics

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.