Abstract
Lithium and Sodium plating are inevitable when using negative electrodes with an electrochemical potential close to the one of the charge carrier. Typical testing and modeling usually assumed that plating occurs at 0V when measured against the charge carrier. While this might be true under thermodynamic equilibrium, this is not true outside of steady state. This has significant implications as, by taking this into account, the testing voltage window of negative electrodes could be extended to allow gathering data for more complete discharges at higher rates. Moreover, from a modeling standpoint, it could also allow to more accurately predict plating initiation potentials dynamically. This work presents preliminary results on the investigation of what parameters are influencing the plating potential and how to take them into account in testing and modeling.