Abstract
Performing operando spectroscopy under practical reaction conditions and extracting spectral components correlating with reaction activity are crucial in elucidating the reactive species in photocatalysis. However, the observation of weak signals corresponding to reactive photogenerated species is frequently hampered under reaction conditions owing to intense background signals originating from thermally-induced species unrelated to the photoinduced reactions. Herein, by synchronizing the millisecond periodic excitations of photocatalysts with a Michelson interferometer used for FT–IR spectroscopy, we succeeded in significantly suppressing the signals derived from thermally excited electrons and observing the reactive photogenerated electrons contributing to the photocatalytic hydrogen evolution. This demonstration was achieved for metal-loaded Ga2O3 photocatalysts under steam methane reforming conditions. Although it has long been conventionally believed that loaded metal cocatalysts function as sinks for reactive photogenerated electrons and active sites for reduction reactions, we found that the free electrons in the metal cocatalysts were not directly involved in the reduction reaction. Alternatively, the electrons shallowly trapped in the in-gap states of Ga2O3 contributed to enhancing the hydrogen evolution rate upon the loading of metal cocatalysts. We verified that the electron abundance in the in-gap states was clearly correlated to the reaction activity, suggesting that metal-induced semiconductor surface states formed in the periphery of the metal cocatalyst play key roles in the photocatalytic hydrogen evolution. Our microscopic insights shift a paradigm on the traditionally believed role of metal cocatalysts in photocatalysis and provide a fundamental basis for rational design of the metal/oxide interfaces as promising platforms for non-thermal hydrogen evolution.
Supplementary materials
Title
Supplementary Information
Description
Experimental; Evaluation of sample heating due to UV light irradiation; Temperature dependence of IR signals derived from thermally excited electrons; Effect of periodic UV irradiation on photocatalytic performance; IR spectra for gaseous and adsorbed molecules; Fitting analysis of IR spectra for electron species; Comparison of RH2 and operando IR spectra for bare and Pt-loaded Ga2O3 samples; Derivation of relationship between RH2 and PCH4 based on kinetic analysis; IR spectra of Pd/Ga2O3 samples under periodic UV irradiation; Derivation of relationship between IST and RH2 based on kinetic analysis; IR spectra of Pt/Ga2O3 samples under inert Ne gas.
Actions