Competitive Exclusion among Self-Replicating Molecules Curtails the Tendency of Chemistry to Diversify

23 May 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The transition of chemistry into biology is poorly understood. One of the key questions in this transition is how the inherently divergent nature of chemical reactions can be curtailed, allowing product mixtures to become enriched in only a limited subset of all possible reaction products. Another seemingly unrelated question is whether Darwinian principles from biology extend to chemistry. Addressing both questions simultaneously, we now show that the evolutionary principle of competitive exclusion, which states that a single niche can only be stably occupied by one species, also applies to self-replicating chemical systems, and that this principle diminishes the tendency of chemistry to diversify. Specifically, we report two systems in which three different self-replicator quasi-species emerge in a largely stochastic fashion from a mixture of two building blocks (resources). To enable their evolution, these replicator mixtures were subjected to an out-of-equilibrium replication-destruction regime, implemented by serial transfer. Out of the many different products initially produced, competitive exclusion leads to the selection of only a single quasi-species when all replicators rely to the same extent on both resources. When, on the other hand, one of the quasi-species preferentially uses one resource and another quasi-species specializes in the other (resource partitioning), these replicator quasi-species effectively occupy different niches and were found to coexist in an evolutionary stable steady state. The ability to escape from competitive exclusion through resource partitioning is important for future efforts on addressing a major evolutionary challenge on the path to life’s emergence: Eigen’s paradox, which requires evolutionary stable communities of co-existing replicators with specific community dynamics.

Keywords

De-novo life
Darwinian evolution
Origins of life
Dynamic combinatorial chemistry
Competitive exclusion
Resource partitioning

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supplementary figures and discussion, materials and methods and characterization data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.