Concentration-Dependent Aggregation of Methylene Blue Acting as a Photoredox Catalyst

16 May 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hydroxylation reactions are important in biological processes and synthetic schemes. Many challenging hydroxylation reactions have been achieved using photoredox catalytic methods. For the oxidative hydroxylation of arylboronic acids, methylene blue has been used successfully as a photoredox catalyst to produce phenyl groups. Here we use broadband transient absorption spectroscopy to determine the mechanism of the photoredox catalytic reaction of methylene blue with phenylboronic acid in the presence of N,N-diisopropylethylamine. Our results show that the reaction proceeds through the triplet state of methylene blue in the presence of oxygen, generating superoxide radical anions. In addition, we observe dimerization of the methylene blue at typical catalytic loadings. As these dimers do not participate in the reaction, increasing the concentration of methylene blue is potentially detrimental to the overall yield.

Keywords

Dimer
aggregate
transient absorption
photoredox catalysis

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary Information for the paper titled: "Concentration-Dependent Aggregation of Methylene Blue Acting as a Photoredox Catalyst "
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.