Insights into the catalytic promotion of propylene self-metathesis over silica-supported molybdenum oxide using substituted olefins

08 May 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Olefin metathesis is a versatile strategy for functional group interconversion around C=C bonds. Here, we investigate in detail a recently discovered promotional effect, where co-feeding 2,3-dimethyl-2-butene isomers (4MEs) increases propylene self-metathesis rates on silica-supported Mo and W oxides by orders of magnitude. Through detailed kinetic measurements on MoOx/SiO2, we validate a dynamic site renewal and decay cycle, analogous to WOx/SiO2, which operates in tandem with the Chauvin cycle and can be effectively modulated by co-feeding 4MEs. Active site titrations indicate that the promotional effect results from an increased density of active sites rather than enhanced per-site catalytic activity. Spectroscopic analyses reveal that the renewal and decay of Mo alkylidene active sites involve proton-transfer mediated by proximal acidic Si-OH groups. Additionally, the co-fed promoters not only reduce Mo (VI) to Mo (IV), thereby increasing the number of pre-active sites, but also act as proton relays, enhancing proton-transfer steps. This dual functionality elucidates the mechanism underlying the enhanced metathesis activity observed with promoter addition.

Keywords

Olefin metathesis
Promotion
Molybdenum oxide

Supplementary materials

Title
Description
Actions
Title
Supporting information for Insights into the catalytic promotion of propylene self-metathesis over silica-supported molybdenum oxide using substituted olefins
Description
This PDF file includes: Figs. S1 to S15 Tables S1 to S7.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.