GRAM-SCALE ENZYMATIC SYNTHESIS OF 2'-DEOXYRIBONUCLEOSIDE ANALOGUES USING NUCLEOSIDE TRANSGLYCOSYLASE

08 May 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nucleosides are pervasive building blocks that are found throughout nature and used extensively in medicinal chemistry and biotechnology. However, the preparation of base-modified analogues using conventional synthetic methodology poses challenges in scale-up and purification. In this work, an integrated approach, involving structural analysis, screening and reaction optimisation, was established for the preparation of 2'-deoxyribonucleoside analogues catalyzed by the Type II nucleoside 2'-deoxyribosyltransferase from Lactobacillus leichmannii (LlNDT-2). Structural analysis, in combination with substrate profiling, identified the constraints on pyrimidine and purine acceptor bases by LlNDT2. A solvent screen identifies pure water as a suitable solvent for the preparation of high value purine and pyrimidine 2'-deoxyribonucleoside analogues on a gram scale under optimised reaction conditions. This approach provides the basis to establish a convergent, step-efficient chemoenzymatic platform for the preparation of high value 2'-deoxyribonucleosides.

Keywords

nucleoside
nucleoside 2'-deoxyribosyltransferases
crystal structure
biocatalysis
scale up

Supplementary materials

Title
Description
Actions
Title
Supplementary Material
Description
Preparation and characterisation of compounds, crystal structure information, preparation of LlNDT-2.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.