Abstract
Mechanochemistry is an environmentally friendly synthetic approach enabling the sustainable production of a wide range of chemicals while reducing or eliminating the need for solvents. Reactive extrusion aims to move mechanochemistry from its conventional gram-scale batch reactions, typically performed in laboratory ball mills, to a continuous large-scale process. Meeting this challenge requires the use of in situ monitoring techniques for gaining insights into reactive extrusion and its underlying processes. While the effectiveness of in situ Raman spectroscopy in providing molecular-level information has been demonstrated, our study uses energy-dispersive X-ray diffraction to monitor reactive extrusion in real-time at the crystalline level.
Supplementary materials
Title
Supplementary Information
Description
Experimental details and supplementary figures
Actions