Abstract
Singlet-triplet (ST) gaps are key descriptors of carbenes, because their properties and reactivity are strongly spin-dependent. However, the theoretical prediction of ST gaps is challenging and generally thought to require elaborate correlated wavefunction methods or double-hybrid density functionals. By evaluating two recent test sets of arylcarbenes (AC12 and AC18), we show that local hybrid functionals based on the "common t" local mixing function (LMF) model achieve mean absolute errors below 1 kcal/mol at a computational cost only slightly higher than that of global hybrid functionals. An analysis of correlation contributions to the ST gaps suggests that the accuracy of the common t-LMF model is mainly due to an improved description of nondynamical correlation which, unlike exchange, is not additive in each spin-channel. Although spin-nonadditivity can be achieved using the local spin polarization alone, the using the "common", i.e., spin-unresolved, iso-orbital indicator t for constructing the LMF is found to be critical for consistent accuracy in ST gaps of arylcarbenes. The results support the view of LHs as vehicles to improve the description of nondynamical correlation rather than sophisticated exchange mixing approaches.
Supplementary materials
Title
Supplementary Material
Description
Explanations, tables and figures with additional computational data, and raw data (PDF).
Actions
Title
TDDFT results for QUEST-ST with spqt-LMF based LHs
Description
Individual excitation energies (eV) of the QUEST-ST subset for the scan of the parameters b, m, and g in the spqt-LMF based LHs (CSV).
Actions