Abstract
The assembly of artificial metalloenzymes provides a second coordination sphere around a metal catalyst. Such a well-defined microenvironment can lead to enhancing the activities and selectivity of the catalyst. Herein, we present the development of artificial hydroxylase (ArHase) by embedding a Fe-TAML (TAML = Tetra Amide Macrocyclic Ligand) catalyst into a human carbonic anhydrase II (hCAII). Incorporation of the Fe-TAML catalyst ([BS-Fe-bTAML]–) within hCAII enhanced the Total TurnOver Number (TTON) for the hydroxylation of benzylic C–H bonds. After engineering a thermostable variant of hCAII (hCAIITS), the resulting ArHase, [BS-Fe-bTAML]– · hCAIITS, was subjected to directed evolution using cell lysates in a 384-well format. After three rounds of laboratory evolution, the best-performing variants exhibited 36-fold enhancement in the initial rate (124.4 min-1) and 2.8-fold enhancement in the TTON (2629 TTON) for the hydroxylation of benzylic C–H bonds compared to the free cofactor. We surmise that an arginine residue introduced in the course of directed evolution engages in hydrogen bonding with [BS-Fe-bTAML]–. This study highlights the potential of relying on a thermostable host protein to improve the catalytic performance of the hCAII-based ArMs.
Supplementary materials
Title
Supporting Information
Description
Full experimental details, supplementary tables, supplementary figures, and characterization data
Actions