CO2-to-methanol electroconversion on a molecular cobalt catalyst facilitated by acidic cations

24 April 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The crucial role of electrolyte cations in CO2 electroreduction has received intensive attention. One prevailing theory is that through electrostatic interactions or direct coordination, larger cations such as Cs+ can better stabilize the key intermediate species for CO and multicarbon (C2+) product generation, for example, on silver and copper, respectively. Herein, we show that smaller, more acidic alkali metal cations greatly enhance CO2-to-methanol conversion kinetics (Li+ > Na+ > K+ > Cs+) on an immobilized molecular cobalt catalyst, unlike the trend observed for CO and C2+. Through kinetic isotope effect studies and electrokinetic analyses, we found that hydration shell of a cation serves as a proton donor in the rate-determining protonation step of adsorbed CHO where acidic cations promote the proton-coupled electron transfer. This study reveals the promotional effect of cation solvation environment on CO2 electroreduction beyond the widely acknowledged stabilizing effect of cations.

Keywords

CO2 reduction
Cobalt phthalocyanine
Electrocatalysis

Supplementary materials

Title
Description
Actions
Title
Supplementary Materials
Description
Materials and Methods, Supplementary Text and Figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.