Discovery of Crystallizable Organic Semiconductors with Machine Learning

17 April 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Crystalline organic semiconductors are known to have improved charge carrier mobility and exciton diffusion length in comparison to their amorphous counterparts. Certain organic molecular thin films can be transitioned from initially prepared amorphous layers to large-scale crystalline films via abrupt thermal annealing. Ideally, these films crystallize as platelets with long-range-ordered domains on the scale of tens to hundreds of microns. However, other organic molecular thin films may instead crystallize as spherulites or resist crystallization entirely. Organic molecules that have the capability of transforming into a platelet morphology feature both high melting point (Tm) and crystallization driving force (ΔGc). In this work, we employed machine learning (ML) to identify candidate organic materials with the potential to crystallize into platelets by estimating the aforementioned thermal properties. Six organic molecules identified by the ML algorithm were experimentally evaluated; three crystallized as platelets, one crystallized as a spherulite, and two resisted thin film crystallization. These results demonstrate a successful application of ML in the scope of predicting thermal properties of organic molecules and reinforce the principles of Tm and ΔGc as metrics that govern the crystallization of organic thin films.

Keywords

Organic Semiconductors
virtual screening
crystallization driving force
crystallization

Supplementary materials

Title
Description
Actions
Title
Experimental and computational data
Description
Datasets preparation for virtual screening, Model development, Virtual screening, Materials, Fabrication, Equipment and characterization
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.