Amination of Phenols and Halophenols via Pyridinium–Iridium Dual Photocatalysis

12 April 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this study, we present a photochemical method for the amination of phenols (C–H) and halophenols (SNAr), facilitated by dual catalytic pathways involving both Ir(III) photocatalysis and phenol–pyridinium EDA complexation. By incorporating a pyridinium additive, we achieved efficient C–N coupling between phenols and diverse aromatic nitrogen nucleophiles, delivering high yields (up to 99%) across a wide range of substrates, including pharmaceuticals and natural products. We investigate reaction selectivity and substrate compatibility/limitations through a combination of experimental and computational techniques. Moreover, we highlight the synthetic versatility of the amination products through various late-stage functionalizations including the grafting of two different heteroarenes onto one phenol scaffold.

Keywords

pyridinium
photocatalysis
amination
SNAr
phenol coupling
iridium

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental and computational procedures, product characterization, HRMS, and NMR spectral data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.