Self-Reporting Hypoxia-Responsive Supramolecular Phototheranostic Nanomaterials Based on AIEgen and Azocalixarene

03 April 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hypoxia is a significant feature in most of solid tumors and developing hypoxia-responsive phototheranostic system is still a challenge. In this contribution, a supramolecular assembly strategy based on sulfonate-functionalized azocalix[4]arene (SAC4A) and cationic aggregation-induced emission photosensitizer (namely TPA-H) was proposed for hypoxia-responsive bioimaging and photodynamic therapy (PDT). Upon supramolecular complexation of TPA-H and SAC4A through electrostatic interaction, the fluorescence and reactive oxygen species (ROS) generation of TPA-H were largely inhibited. In hypoxic tumors, the azo group of SAC4A can be reduced to aniline derivative and release the included TPA-H to recover its pristine fluorescence and ROS. Interestingly, the free TPA-H undergoes cell membrane-to-mitochondria translocation during cell imaging, achieving a real-time self-reporting PDT system. In vivo tumor imaging and therapy reveal that this as-prepared supramolecular complexes have good biosafety and efficient antitumor activity under hypoxia. Such hypoxia-responsive supramolecular photosensitizer system will enrich image-guided PDT.

Keywords

aggregation-induced emission
host-guest interaction
photodynamic therapy
hypoxia
bioimaging

Supplementary materials

Title
Description
Actions
Title
Self-Reporting Hypoxia-Responsive Supramolecular Phototheranostic Nanomaterials Based on AIEgen and Azocalixarene
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.