Abstract
Radical-type carbene transfer catalysis is an efficient method for the direct functionalization of C–H and C=C bonds. However, carbene radical complexes are currently formed via high-energy carbene precursors, such as diazo compounds or iodonium ylides. Many of these carbene precursors require additional synthetic steps, have an explosive nature or generate halogenated waste. Con-sequently, the utilization of carbene radical catalysis is limited by specific carbene precursors to access the carbene radical inter-mediate. In this study, we generate a cobalt(III) carbene radical complex from dimethyl malonate, which is commercially available and bench-stable. EPR and NMR spectroscopy were used to identify the intermediates and showed that the cobalt(III) carbene radical complex is formed upon light irradiation. In presence of styrene, carbene transfer occurred, forming cyclopropane as the product. With this photochemical method, we demonstrate that dimethyl malonate can be used as an alternative carbene precursor in the formation of a cobalt(III) carbene radical complex.
Supplementary materials
Title
Supporting Information
Description
Supporting Information belonging to the paper
Actions