Optimizing Force Fields with Experimental Data Using Ensemble Reweighting and Potential Contrasting

02 April 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Despite force field improvements over the past decades, we still encounter situations where simulation results disagree with experiments due to force field inaccuracies. Such situations provide opportunities to improve force fields. In this study, we introduce a novel framework for optimizing force fields using experimental data. The unique feature of this framework is that it aims to optimize force fields to match experiments while minimizing the perturbation made to the original force field. To achieve this, we combine ensemble reweighting techniques with the potential contrasting method. Ensemble reweighting is used to reweight an ensemble of conformations generated using an existing force field to match experimental data while minimizing the perturbation to the original ensemble. Potential contrasting is then utilized to optimize force field parameters to reproduce the reweighted ensemble. We demonstrate the framework's effectiveness by optimizing a coarse-grained force field for intrinsically disordered proteins using experimental radius of gyration data.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.