Machine Learning Prediction of Thermodynamic Stability and Electronic Properties of 2D Layered Conductive Metal-Organic Frameworks

02 April 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

2D layered metal-organic frameworks (MOFs) are a new class of multifunctional materials that can provide electrical conductivity on top of the conventional structural characteristics of MOFs, offering potential applications in electronics and optics. Here, for the first time, we employ Machine Learning (ML) techniques to predict the thermodynamic stability and electronic properties of layered electrically conductive (EC) MOFs, bypassing expensive ab initio calculations for the design and discovery of new materials. Proper feature engineering is a very important factor in utilizing ML models for such purposes. Here, we show that a combination of elemental features, using generic statistical reduction methods and crystal structure information curated from the recently introduced EC-MOF database, leads to a reasonable prediction of the thermodynamic and electronic properties of EC MOFs. We utilize these features in training a diverse range of ML classifiers and regressors. Evaluating the performance of these different models, we show that an ensemble learning approach in the form of stacking ML models can lead to higher accuracy and more reliability on the predictive power of ML to be employed in future MOF research.

Keywords

electrically conductive metal-organic frameworks
machine learning
metallicity
band gap
formation energy

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information for : Machine Learning Prediction of Thermodynamic Stability and Electronic Properties of 2D Layered Conductive Metal-Organic Frameworks
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.