Abstract
Maintaining optimal relative humidity is paramount for human comfort. Therefore, the utilization of quartz crystal microbalance (QCM) as a humidity sensor platform holds significant promise due to its cost-effectiveness and high sensitivity. This study explores the efficacy of three free-base Zr porphyrin metal-organic frameworks (MOFs) - namely MOF-525, MOF-545, and NU-902 - as sensitive materials for QCM-based humidity sensors. Our extended experimental findings reveal that these materials exhibit notable sensitivity, particularly within relative humidity ranges of 40% to 100%. However, we observe potential irreversible adsorption sites within the MOF-545 framework, hindering its ability to revert to its initial state after prolonged exposure. In light of this observation, we conduct periodic cycling experiments at relative humidity levels of 40-70% to evaluate the measurement repeatability and feasibility of these sensors for indoor applications. Interestingly, the periodic cycling study demonstrates that MOF-545 shows promising repeatability, positioning it as a strong contender for indoor humidity sensing. In contrast, MOF-525 may necessitate extended desorption time, and NU-902 displays diminished sensitivity at low relative humidity levels. Nevertheless, a preliminary treatment of the MOF-545 QCM sensor may be necessary to address irreversible adsorption sites and uphold measurement repeatability, as only reversible adsorption sites are currently accessible. This study underscores the potential of MOF-based QCM sensors for effective humidity monitoring in indoor environments, thus facilitating improved comfort and environmental control.
Supplementary materials
Title
Supporting Information for the Manuscript
Description
This contains additional information to support the manuscript
Actions