Order–Disorder–Order Mesophase Transitions in Self-Assembled Mesoporous Alumina for Enhanced CO2 Adsorption

01 April 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The addition of a hydrophobic micelle pore expander to self-assembling mesostructured hybrid materials enables access to new combinations with differently ordered mesophases and enhanced structural properties. Here we detail our investigations into the influence of 1,3,5-trimethylbenzene (TMB) on the self-assembly behaviors of an F127 Pluronic triblock copolymer with an aluminum oxide sol additive. By varying the chemical mixing sequence, the TMB-to-F127 mass ratio and the acid-to-metal molar ratio, we observed that TMB exhibits dual roles, functioning both as a hydrophobic swelling agent and as a low dielectric co-solvent. This induces a mesophase transition from an ordered p6mm lattice to a disordered state and subsequently back to the ordered p6mm phase. We propose a structure formation mechanism based on the DLVO theory to describe the thermodynamics and kinetic mobility of the hybrid micelles during the order-disorder and ensuing disorder-order mesophase transitions. The resulting ordered mesoporous alumina structures, with considerable pore sizes (up to 12 nm), high surface areas (up to 314 m2/g) and pore volumes (up to 0.74 cm3/g), organized pore geometry and variable inorganic wall thicknesses, have shown excellent CO2 adsorption capacities and are appealing for various applications, including stable high temperature catalyst supports, separation and sensing.

Keywords

mesoporous alumina
mesophase transitions
DLVO
CO2 capture
pore expander
solvation
self-assembly

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.