DeepCt: Predicting pharmacokinetic concentration-time curves and compartmental models from chemical structure using deep learning

29 March 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

After initial triaging using in vitro absorption, distribution, metabolism, and excretion (ADME) assays, pharmacokinetic (PK) studies are the first application of promising drug candidates in living mammals. Pre-clinical PK studies characterize the evolution of the compound’s concentration over time, typically in rodents’ blood or plasma. From this concentration-time (C-t) profiles, PK parameters such as total exposure or maximum concentration can be subsequently derived. An early estimation of compounds’ PK offers the promise of reducing animal studies and cycle times by selecting and designing molecules with increased chances of success at the PK stage. Even though C-t curves are the major readout from a PK study, most machine learning-based prediction efforts have focused on the derived PK parameters instead of C-t profiles, likely due to the lack of approaches to model the underlying ADME mechanisms. Herein, a novel deep learning approach termed DeepCt is proposed for the prediction of C-t curves from the compound structure. Our methodology is based on the prediction of an underlying mechanistic compartmental PK model, which enables further simulations, and predictions of single- and multiple-dose C-t profiles.

Keywords

machine learning
deep learning
mechanistic modeling
pharmacokinetics
compartmental analysis
concentration-time
time-exposure
drug discovery

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Additional dataset statistics and results
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.