One-step Hydrothermal Synthesis of Sn-doped Sb2Se3 for Solar Hydrogen Production

18 March 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Antimony selenide (Sb2Se3) has recently been intensively investigated and has achieved significant advancement in photoelectrochemical (PEC) water splitting. In this work, a facile one-step hydrothermal method for the preparation of Sn-doped Sb2Se3 photocathodes with improved PEC performance was investigated. We present an in-depth study of the performance enhancement in Sn-doped Sb2Se3 photocathodes using capacitance-voltage (CV), drive level capacitance profiling (DLCP), and electrochemical impedance spectroscopy (EIS) techniques. The incorporation of Sn2+ into the Sb2Se3 results in increased carrier density, reduced surface defects, and improved charge separation, thereby leading to improved PEC performance. With a thin Sb2Se3 absorber layer (270 nm thickness), the Sn-doped Sb2Se3 photocathode exhibits an improved photocurrent density of 17.1 mA cm−2 at 0 V versus RHE (VRHE) compared to that of the undoped Sb2Se3 photocathode (14.4 mA cm−2). This work not only highlights the positive influence of Sn doping on Sb2Se3 photocathodes but also showcases a one-step method to synthesize doped Sb2Se3 with improved optoelectronic properties.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.