Optical Chopper for LOngitudinal-Detected (LOD) EPR

29 February 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Dynamic nuclear polarization (DNP) is a nuclear magnetic resonance (NMR) hyperpolarization technique that mediates polarization transfer from unpaired electrons to nuclear spins. DNP performance can vary significantly depending on the types of polarizing agents employed, and the criteria for optimum DNP efficiency are not fully understood. Thus, a better understanding of the structure, electron paramagnetic resonance (EPR) linewidths, and relaxation properties would aid in designing more efficient DNP polarizing agents. However, EPR characterizations of the polarizing agents are typically performed in different environments (e.g., strength of magnetic field and microwave power) than typical DNP experiments. Here, we demonstrate a low-cost and home-built setup that enables in-situ EPR detection in a dual resonance DNP-NMR/EPR probe using an optical chopper. The chopper modulates the microwave irradiation, thereby modulating the longitudinal magnetization (Mz) of the electron spins. Our results of DNP and EPR spectra on TEMPOL using a solid-state microwave source at 6.7 T / 188 GHz and 4.2 K showed a good agreement. In principle, an optical chopper should be compatible with a wide range of microwave sources, including gyrotrons that output high-power microwaves. To verify this, we placed an optical chopper in between the waveguides of a 527 GHz gyrotron and successfully reproduced a DNP field profile similar to the case without a chopper. Hence, our work provides a proof-of-principle setup that could enable a gyrotron-based EPR spectrometer in the future.

Keywords

NMR
DNP
EPR

Supplementary materials

Title
Description
Actions
Title
Video of optical chopper EPR
Description
Video of optical chopper EPR
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.