Functionalization and Structural Evolution of Conducting Quasi-One-Dimensional Chevrel-Type Telluride Nanocrystals

21 February 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Interfacing organic molecular groups with well-defined inorganic lattices, especially in low dimensions, enables synthetic routes for the rational manipulation of both their local or extended lattice structures and physical properties. While appreciably studied in two-dimensional systems, the influence of surface organic substituents on many known and emergent one-dimensional (1D) and quasi-1D (q-1D) crystals has remained underexplored. Herein, we demonstrate the surface functionalization of bulk and nanoscale Chevrel-like q-1D ionic crystals using In2Mo6Te6, a predicted q-1D Dirac semimetal, as the model phase. Using a series of alkyl ammonium (—NR4+; R = H, methyl, ethyl, butyl, and octyl) substituents with varying chain lengths, we demonstrate the systematic expansion of the intra-chain c-axis direction and the contraction of the inter-chain a/b-axis direction with longer chain substituents. Additionally, we demonstrate the systematic expansion of the intra-chain c-axis direction and the contraction of the inter-chain a/b-axis direction as the alkyl chain substituents become longer using a combination of powder X-ray diffraction and Raman experiments. Beyond the structural modulation that the substituted groups can impose on the lattice, we also found that the substitution of ammonium-based groups on the surface of the nanocrystals resulted in selective suspension in aqueous (NH4+-functionalized) or organic solvents (NOc4+-functionalized), imparted fluorescent character (Rhodamine B-functionalized), and modulated the electrical conductivity of the nanocrystal ensemble. Altogether, our results underscore the potential of organic-inorganic interfacing strategies to tune the structural and physical properties of rediscovered Chevrel-type q-1D ionic solids and open opportunities for the development of surface-addressable building blocks for hybrid electronic and optoelectronic devices at the nanoscale.

Supplementary materials

Title
Description
Actions
Title
Supplementary Information document
Description
Includes supplementary figures and tables
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.