High-performance multi-GPU analytic RI-MP2 energy gradients

19 February 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This article presents a novel algorithm for the calculation of analytic energy gradients from second order Møller Plesset perturbation theory within the Resolution-of-the-Identity approximation (RI-MP2) which is designed to achieve high performance on multi-GPU clusters. The algorithm uses GPUs for all major steps of the calculation, including integral generation, formation of all required intermediate tensors, solution of the Z-vector equation and gradient accumulation. The implementation in the EXtreme Scale Electronic Structure System (EXESS) software package includes a tailored, highly efficient, multi-stream scheduling system to hide CPU-GPU data transfer latencies and allows nodes with 8 A100 GPUs to operate at over 80% of theoretical peak floating-point performance. Comparative performance analysis shows a significant reduction in computational time relative to traditional multi-core CPU-based methods, with our approach achieving up to a 95-fold speedup over the single-node performance of established software such as Q-Chem and ORCA. Additionally, we demonstrate that pairing our implementation with the molecular fragmentation framework in EXESS can drastically lower the computational scaling of RI-MP2 gradient calculations from quintic to sub-quadratic, enabling further substantial savings in runtime while retaining high numerical accuracy in the resulting gradients.

Keywords

RI-MP2
GPU
gradient
MP2
electronic structure

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.