Stable and Accurate Atomistic Simulations of Flexible Molecules using Conformationally Generalisable Machine Learned Potentials

16 February 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Computational simulation methods based on machine learned potentials (MLPs) promise to revolutionise shape prediction of flexible molecules in solution, but their widespread adoption has been limited by the way in which training data is generated. Here, we present an approach which allows the key conformational degrees of freedom to be properly represented in reference molecular datasets. MLPs trained on these datasets using a global descriptor scheme are generalisable in conformational space, providing quantum chemical accuracy for all conformers. These MLPs are capable of propagating long, stable molecular dynamics trajectories, an attribute that has remained a challenge for MLPs. We deploy the MLPs in obtaining converged conformational free energy surfaces for flexible molecules via well-tempered metadynamics simulations; this approach provides a hitherto inaccessible route to accurately computing the structural, dynamical and thermodynamical properties of a wide variety of flexible molecular systems.

Keywords

Machine Learned Potentials
Metadynamics
Molecular Dynamics
Conformational Stability

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.