Efficient Capture and Release of the Rare-Earth Element Neodymium in Aqueous Solution by Recyclable Covalent Organic Frameworks

14 February 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Rare-earth elements (REEs) are present in a broad range of critical materials. The development of solid adsorbents for REE capture could enable the cost-effective recycling of REE-containing magnets and electronics. In this context, covalent organic frameworks (COFs) are promising candidates for REE adsorption due to their exceptionally high surface area. Despite having attractive physical properties, COFs are heavily underutilized for REE capture applications due to their limited lifecycle in aqueous acidic environments, as well as synthetic challenges associated with the incorporation of ligands suitable for REE capture. Here, we show how the Ugi multicomponent reaction can be leveraged to post-synthetically modify imine-based COFs for the introduction of diglycolic acid (DGA) moiety, a promising scaffold for REE capture. The adsorption capacity of the DGA-functionalized COF was found to be more than 40 times higher than that of the pristine imine COF precursor and more than three times higher than that of the next-best reported DGA-functionalized solid support. This rationally designed COF has appealing characteristics of high adsorption capacity, fast and efficient capture and release of the REE ions, and reliable recyclability, making it one of the most promising adsorbents for solid-liquid REE ion extractions reported to date.

Keywords

Rare-Earth Elements
Neodymium
Covalent Organic Frameworks

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Synthetic procedures, characterization details, and adsorption studies.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.