Abstract
Delithiation of layered oxide electrodes triggers irreversible oxygen loss, one of the primary degradation modes in lithium-ion batteries. However, the delithiation-dependent mechanisms of oxygen loss remain poorly understood. Here, we investigate the oxygen nonstoichiometry in Li- and Mn-rich Li1.18-xNi0.21Mn0.53Co0.08O2-δ electrodes as a function of Li content by utilizing cycling protocols with long open-circuit voltage steps at varying states of charge. Surprisingly, we observe significant oxygen loss even at moderate delithiation, corresponding to 2.5, 4.0 and 7.6 mL O2 g-1 after resting at 135, 200, and 265 mAh g-1 (relative to the pristine material) for 100 h. Our observations suggest an intrinsic oxygen instability consistent with predictions of high equilibrium oxygen activity at intermediate potentials. From a mechanistic viewpoint, we show that cation disorder greatly lowers the oxygen vacancy formation energy by decreasing the coordination number of transition metals to certain oxygen ions. In addition, we observe a large chemical expansion coefficient with respect to oxygen nonstoichiometry, which is about three times greater than those of classical oxygen-deficient materials such as fluorite and perovskite oxides. Our work challenges the conventional wisdom that deep delithiation is a necessary condition for oxygen loss in layered oxide electrodes and highlights the importance of calendar aging for investigating oxygen stability.
Supplementary materials
Title
Supplementary Information for Substantial Oxygen Loss and Chemical Expansion in Lithium-Rich Layered Oxides at Moderate Delithiation
Description
Supplementary Figures 1-11, Supplementary Tables 1-3, and Supplementary Notes 1-3. These supplementary materials add context and additional information/discussion to the points raised in the main text.
Actions