Abstract
The significant expansion in volume and the formation of dendrites on lithium metal anodes lead to poor electrochemical reversi-bility. In this study, ZnO, N-dually doped carbon (p-ZNCC) was synthesized using oxygen plasma assistance and zeolitic imidazo-late framework-8 (ZIF-8). The use of plasma ensures tight and uniform growth of ZIF-8 particles on carbon fiber, promoting the formation of lithiophilic pyrrolic N after sintering. This enables uniform lithium deposition and rapid lithium-ion diffusion during the operation. The resulting lithium electrode with the p-ZNCC host (p-ZNCC-Li) exhibits stable lithium stripping/plating for up to 3000 h and a voltage hysteresis of 36 mV when cycled at 10 mA cm-2-10 mAh cm-2. Electrochemical impedance spectroscopy (EIS) reveals low charge transfer resistance and a high diffusion coefficient for p-ZNCC-Li. Moreover, the LNMO||p-ZNCC-Li cell demonstrates improved capacity retention at 1 C after 250 cycles. This study introduces a novel approach to growing metal-organic frameworks (MOFs) with dual lithiophilic spots on carbon cloth, promising advancements in lithium metal anode design.
Supplementary materials
Title
Plasma-activated tight and uniform grown of metal-organic frame-work on carbon cloth for stable Li metal anode
Description
The calculation of Warburg factor and radar figure of electro-chemical parameters obtained from the EIS plots before rate cycling. The comparison of Li symmetric cell cycle perfor-mance
Actions