Investigating capacity fade mechanisms in Mg-MgClx batteries

12 February 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Mg batteries are a promising alternative to Li-based chemistries due to the high abundance, low cost, and high volumetric capacity of Mg relative to Li. Mg is also less prone to dendritic plating morphologies, promising safer operation. Mg plating and stripping is highly efficient in chloride-containing electrolytes; however, chloride is incompatible with many candidate cathode materials. In this work, we capitalize on the positive effect of chloride by using transition metal chloride cathodes with a focus on low cost, Earth-abundant metals. Both soluble and sparingly soluble chlorides show capacity fade upon cycling. Active material dissolution and subsequent crossover to the Mg anode are the primary drivers of capacity fade in highly soluble metal chloride cathodes. We hypothesize that incomplete conversion and chemical reduction by the Grignard-based electrolyte are major promoters of capacity fade in sparingly soluble metal chlorides. Modifications to the electrolyte can improve capacity retention, suggesting that future work in this system may yield low cost, high retention Mg-MgClx batteries.

Keywords

magnesium battery
metal chloride conversion chemistry
Mg-MClx
battery

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Cell schematic, supporting electrochemical data, ex situ XRD of cathodes at various SOCs,
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.