Abstract
Atmospheric CO2 removal using engineered chemical processes, aka direct air capture (DAC), has become an essential component of our available portfolio for mitigating climate change. Here we describe a promising approach to DAC based on reactive crystallization of atmospheric CO2 (RC-DAC) with aqueous guanidine and amino acid solvents. Compared to the previously studied phase-changing DAC processes involving initial CO2 absorption by an aqueous solvent (e.g., KOH, K-SAR) followed by carbonate crystallization in a second step, RC-DAC combines the CO2 absorption and carbonate crystallization into a single step. Thus, as the insoluble carbonate salts are removed from solution by crystallization, more CO2 is pulled from the air into solution, further driving the DAC process. The RC-DAC was performed in a household humidifier as the air-liquid contactor, which can handle solid-liquid slurries effectively. The crystallization was monitored in situ by pH measurements, real-time imaging with a microscope probe, and by Raman spectroscopy, and ex situ by NMR spectroscopy and powder X-ray diffraction. The investigation provided a detailed mechanistic picture of the RC-DAC process, involving formation of carbamate and carbonate anions in solution, followed by sequential crystallization of different guanidinium carbonate phases.
Supplementary materials
Title
Supporting Information
Description
Additional experimental details, PXRD analyses, 1H NMR and Raman spectra.
Actions