Abstract
Covalent organic frameworks (COFs) are typically prepared in the form of insoluble microcrystalline powders using batch solvothermal reactions that are energy-intensive and require long annealing periods (>120 °C, >72 hours). Thus, their wide-scale adoption in a variety of potential applications is impeded by complications related to synthesis, upscaling, and processing, which also compromise their commercialization. Here we report a strategy to address both the need for scalable synthesis and processing approaches through the continuous, accelerated synthesis and processing of imine- and hydrazone-linked COFs using a flow microreactor. The flow microreactor is capable of unprecedented COF productivities, up to 61,111 kg m-3 day-1, and provides control over key stages of COF formation, including nanoparticle growth, self-assembly, and precipitation. Additionally, the technique successfully yields highly crystalline and porous COFs in versatile macroscopic structures such as monoliths, membranes, prints, and packed beds. We also show that a COF synthesized using the flow reactor acts as an excellent photocatalyst for the photocatalytic degradation of perfluorooctanoic acid (PFOA) outperforming the degradation efficiency of classical photocatalysts.