Predicting the price of molecules using their predicted synthetic pathways

07 February 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Currently, numerous metrics allow chemists and computational chemists to refine and filter libraries of virtual molecules in order to prioritize their synthesis. Some of the most commonly used metrics and models are QSAR models, docking scores, diverse druggability metrics, and synthetic feasibility scores to name only a few. Among the known metrics, a function which estimates the price of a novel virtual molecule and which takes into account the availability and price of starting materials has never been considered before. Being able to make such a prediction could improve and accelerate the decision-making process related to the cost-of-goods. Taking advantage of recent advances in the field of Computer Aided Synthetic Planning (CASP), we decided to investigate if the predicted retrosynthetic pathways of a given molecule and the prices of its associated starting materials could be good features to predict the price of that compound. In this work, we present a deep learning model, RetroPriceNet, that predicts the price of molecules using their predicted synthetic pathways. On a holdout test set, the model achieves better performance than the state-of-the-art model. The developed approach takes into account the synthetic feasibility of molecules and the availability and prices of the starting materials.

Keywords

Molecular price prediction
Synthetic accessibility
Retrosynthesis
Deep learning

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.