Electronic vector potential from the exact factorization of a complex wavefunction

06 February 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We generalize the definitions of local scalar potentials named vkin and vN−1, which are relevant to properly describe phenomena such as molecular dissociation with density-functional theory, to the case in which the electronic wavefunction corresponds to a complex current-carrying state. In such a case, an extra term in the form of a vector potential appears which cannot be gauged away. Both scalar and vector potentials are introduced via the exact factorization formalism which allows to expand the given Schrödinger equation in two coupled equations, one for the marginal and one for the conditional amplitude. The electronic vector potential is directly related to the paramagnetic current density carried by the total wavefunction and to the diamagnetic current density in the equation for the marginal amplitude. An explicit example of this vector potential in a triplet state of two non-interacting electrons is showcased together with its associated circulation, giving rise to a non-vanishing geometric phase. Some connections with the exact factorization for the full molecular wavefunction beyond the Born-Oppenheimer approximation are also discussed.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.