Abstract
While the adsorption properties of transition metal catalysts have been widely studied, leading to the discovery of various scaling relations, descriptors of catalytic activity, and well-established computational models, a similar understanding of semiconductor catalysts has not yet been achieved. In this work, we present a high-throughput density functional theory investigation into the adsorption properties of 5 oxides of interest to the photocatalytic CO2 reduction reaction: TiO2 (rutile and anatase), SrTiO3, NaTaO3, and CeO2. Using a systematic approach, we exhaustively identify unique surfaces and construct adsorption structures to undergo geometry optimizations. We then perform a data-driven analysis, which reveals the presence of weak adsorption energy scaling relations, the propensity of adsorbates of interest to interact with oxygen surface sites, and the importance of slab deformation upon adsorption. Our findings are presented in the context of experimental observations and in comparison to previously studied classes of catalysts, such as pure metals and tellurium-containing semiconductors, and reinforce the need for a comprehensive approach to the study of site-specific surface phenomena on semiconductors.
Supplementary materials
Title
Supporting Information
Description
Supporting information including examples of input files
Actions