Synthesis and Reactivity of the [NCCCO]– Cyanoketenate Anion

05 February 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cyanoketene is a fundamental molecule that is actively being searched for in the interstellar medium. Its deprotonated form (cyanoketenate) is a heterocumulene that is isoelectronic to carbon suboxide whose structure has been the subject of debate. These research questions are hampered by a lack of useful synthetic pathways to these molecules. We report the first synthesis of the cyanoketenate anion in [K(18-crown-6)][NCCCO] (1) as a stable molecule on a multigram scale in excellent yields (>90%). The structure of this molecule is probed crystallographically and computationally. We also explore the protonation of 1, and its reaction with triphenylsilylchloride and carbon dioxide. In all cases, anionic dimers are formed. The cyanoketene could be synthesized and crystallographically characterized when stabilized by a N-heterocyclic carbene. The cyanoketenate is a very useful unsaturated building block containing N, C and O atoms that can now be explored with relative ease and will undoubtedly unlock more interesting reactivity.

Keywords

cumulenes
cyanoketene
carbon monoxide
small-molecule activation
N-heterocyclic carbene

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information for Synthesis and Reactivity of the [NCCCO]– Cyanoketenate Anion
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.