Insights into the First Multi-Transition-Metal Containing Ruddlesden Popper-Type Cathode for all-solid-state Fluoride Ion Batteries

30 January 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Promising cathode materials for fluoride-ion batteries (FIBs) are 3d transition metal containing oxides with Ruddlesden-Popper-type structure. So far, multi-elemental compositions were not investigated, but could alternate electrochemical performance similar to what had been found for cathode materials for lithium-ion batteries. Within this study, we investigate RP type La2Ni0.75Co0.25O4.08 as an intercalation-based active cathode material for all-solid-state FIBs. We determine the structural changes of La2Ni0.75Co0.25O4.08 during fluoride intercalation / de-intercalation by ex-situ X-ray diffraction, which showed that F- insertion leads to transformation of the parent phase to three different phases. Changes in Ni and Co oxidation states and coordination environment were examined by X-ray absorption spectroscopy and magnetic measurements in order to understand the complex reaction behaviour of the phases in detail, showing that the two transition metals behave differently in the charging and discharging process. Under optimized operating conditions, a cycle life of 120 cycles at a critical cut-off capacity of 40 mAh g-1 against Pb/PbF2 was obtained, which is one of the highest observed for intercalation electrode materials in FIBs so far. The average Coulombic efficiencies ranged from 85% to 90%. Thus, La2Ni0.75Co0.25O4.08 could be a promising candidate for cycling-stable high-energy cathode materials for all-solid-state FIBs

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.