Chemoenzymatic one-pot cascade for the construction of asymmetric C-C and C-P bonds via formal C-H activation

23 February 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The integration of organocatalysis and enzyme catalysis in one-pot cascade processes allows for the efficient construction of complex molecular architectures with high levels of stereocontrol. However, challenges related to reaction compatibility between both processes are often a limitation for the development of efficient synthetic routes. In this study, we describe the combination of an enzymatic aerobic oxidation followed by the squaramide-mediated asymmetric formation of C-P and C-C bonds to access important building blocks such as chiral α-hydroxy phosphonates and β-nitro alcohols in good yields and enantiomeric ratios. This sequential process is conducted in a one-pot fashion within a biphasic system and represents a pioneering example of a chemoenzymatic cascade involving aerobic biooxidation and an organocatalytic step operating under hydrogen-bond activation mode.

Keywords

oxidases
squaramides
cascade
asymmetric synthesis

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supplementary information with experimental procedures, HPLC traces and compound characterisation
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.