Activation of alkyl hydroperoxides by manganese com plexes of tmtacn for initiation of radical polymerisation of alkenes

10 January 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The activation of alkyl hydroperoxides to generate radicals is a key step in the initiation of radical polymerisations in many industrial applications, not least protective coatings. Cobalt soaps are highly effective catalysts under ambient conditions but viable alternatives based on less scarce catalysts are desirable, with especially iron and manganese catalysts showing potential. Manganese complexes of the ligand N,N',N"-trimethyl-1,4,7-triazacyclononane (tmtacn) are long established as catalysts for organic oxidations with H2O2, however their reactivity with alkyl hydroperoxides is less studied especially in low- or apolar solvents. Here we show that this family of complexes can be employed as catalysts for the decomposition of alkyl hydroperoxides in apolar solvents such as styrene/methyl methacrylate mixtures and resins based on styrene/bisphenol-A based diglycidyl ether bismethacrylate (BADGE-MA). The progress of alkene polymerisation in crosslinking resins is followed by Raman spectroscopy to establish its dependence on the oxidation state of the manganese catalyst used, as gelation time and onset of autoacceleration are of particular interest for many applications. We show, through reaction progress monitoring with UV/vis absorption and Raman spectroscopy, that the stability of the manganese complexes in the resin mixtures has a substantial effect on curing progress and that the oxidation state of the resting state of the catalyst is most likely Mn(II), in contrast to reactions with H2O2 as oxidant in which the oxidation state of the resting state of catalyst is Mn(III). Manganese complexes of tmtacn are shown to be capable initiators of alkene radical polymerisations, and their rich coordination and redox chemistry means that resin curing kinetics can potentially be tuned more readily than with cobalt soaps.

Keywords

Manganese
Resin
curing
polymerization
Raman spectroscopy
catalysis
peroxide

Supplementary materials

Title
Description
Actions
Title
supporting information
Description
additional spectral data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.