Optimization of Microbial a Fuel Cell with Linear Sweep Voltammetry and Microfluidics

13 December 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A microbial fuel cell with a pure-culture Geobacter sulfurreducens electroactive biofilm was used for performance optimization by making rapid changes to experimental parameters in microchannels while monitoring their effect using linear sweep voltammetry. A systematic investigation of polarization behavior and evaluation of system resistivity provided important figures of merit and mechanistic insights on the effects of flow rates, concentrations, and temperature after reaching maturity. After individual parameters were optimized, a synergistic effect was observed by applying optimal parameters together, resulting in improved current and maximum power densities, compared to stable values at unoptimized conditions. Continued acclimation for just two days under these conditions resulted in further improvements to anode area-normalized current and power maxima (10.49±0.23 A m-2 and 2.48±0.27 W m-2), which are among the highest reported in the literature for a microfluidic MFC. In keeping with other accepted normalization protocol using the area separating anode and cathode chambers, the outputs were recalculated as 64 A m-2 and 15 W m-2.

Keywords

Microbial fuel cell
Microfluidics

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
A table of solution ionic strengths
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.