Studying Cation Exchange in {Cr7Co} Pseudorotaxanes: Preparatory Studies for Making Hybrid Molecular Machines

18 December 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In the design of dynamic supramolecular systems used in molecular machines, it is important to understand the binding preferences between the macrocycle and stations along the thread. Here, we apply 1H NMR spectroscopy to investigate the relative stabilities of a series of linear alkylammonium templated pseudorotaxanes with the general formula [H2NRR’][Cr7CoF8(O2CCH2tBu)16] by exchanging the cation in solution. Our results show that the pseudorotaxanes are able to exchange threads via a dissociative mechanism. The position of equilibrium is dependent upon the ammonium cation and solvent used. Short chain primary ammonium cations are shown to be far less favourable macrocycle stations than secondary ammonium cations. Collision-induced dissociation mass spectrometry (CID-MS) has been used to look at disassembly of the pseudorotaxanes in a solvent-free environment and stability trends compared to those in acetone-d6. The energy needed to induce 50% of the precursor ion loss (E50) is used shows a similar trend to the equilibria measured by NMR. Comparing the relative stabilities of these hybrid inorganic-organic pseudo-rotaxanes with host-guest compounds involving crown ethers shows significant differences that may be valuable for the design of molecular machines.

Keywords

NMR
host guest

Supplementary materials

Title
Description
Actions
Title
SI for paper
Description
SI for paper
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.