Crystallization of n-alkanes under anisotropic nano-confinement in lipid bilayers

20 December 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Understanding crystallization behaviour is integral to the design of pharmaceutical compounds for which the pharmacological properties depend on the crystal forms achieved. Very often, these crystals are based on hydrophobic molecules. One method for delivering crystal-forming hydrophobic drugs is by means of lipid nanoparticle carriers. However, so far, a characterization of the potential crystallization of fully hydrophobic molecules in a lipid environment has never been reported. In this work we investigate the crystallization behaviour of two model hydrophobic chains, n-eicosane (C20) and n-triacontane (C30), in phospholipid bilayers. We combine static 2H nuclear magnetic resonance (NMR) spectroscopy and differential scanning calorimetry (DSC) and show that C30 can indeed crystallize inside DMPC and POPC bilayers. The phase transition temperatures of C30 are slightly reduced inside DMPC, and rotator phase formation becomes a two-step process: Pre-organized n-alkane chains assemble in rotator-phase crystallites just as fast as bulk C30, but further addition of molecules is notably slower. Under the same isothermal conditions, different crystal forms can be obtained by crystallization in the membrane and in bulk. In excess water conditions, homogeneous nucleation of C30 is observed. The initial anisotropic molecular arrangement of C30 molecules in the membrane is readily re-covered upon reheating, showing reversibility. The shorter C20 molecules on the other hand become trapped in the DMPC membrane gel-phase upon cooling and do not crystallize. This work marks the first observation of the crystallization of hydrophobic chains inside a lipid bilayer environment. As such, it defines a fundamental starting point for studying the crystallization characteristics of various hydrophobic molecules in lipid membranes.

Keywords

lipid membranes
n-alkanes
solid-state NMR
crystallization under confinement

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Additional figures, as referenced in the main article.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.